USDA NATURAL RESOURCES CONSERVATION SERVICE # MARYLAND CONSERVATION PRACTICE STANDARD #### **MANURE TRANSFER** CODE 634 (Reported by No.) #### **DEFINITION** A manure conveyance system using structures, conduits, or equipment. #### **PURPOSES** To transfer animal manure (bedding material, spilled feed, process and wash water, and other residues associated with animal production may be included) through a hopper or reception pit, a pump (if applicable), a conduit, or hauling equipment to: - 1. A manure storage/treatment facility; - 2. A loading area; and/or, - 3. A location for final utilization. ### CONDITIONS WHERE PRACTICE APPLIES The manure transfer component is a part of a planned manure management or comprehensive nutrient management system. This practice is applicable where manure is generated by live-stock production or processing, and a conveyance system is necessary to transfer manure from the source to a storage/treatment facility and/or a loading area, and/or from storage/treatment to an area for utilization. Manure transfer includes hauling manure from one location with excess manure to another location that can utilize the manure in an acceptable manner. The practice does not apply to push-off platforms on scraping alleys or loading-unloading pads that are covered under the Maryland conservation practice standard for Waste Storage Facility, Code 313. This practice does not include land application or other use of manure. Criteria for land application of manure are included in Maryland NRCS conservation practice standards for Nutrient Management, Code 590, and Waste Utilization, Code 633. #### **CONSIDERATIONS** #### General Consider economics (including design life), overall manure management system plans, and health and safety factors. #### **On-Farm Transfer** In locating structures, utilize existing topography to the greatest extent possible to generate head on structures and reduce pumping requirements. Consider the operating space requirements of loading and unloading of equipment in the vicinity of the manure transfer components. Consider the subsurface conditions, i.e., depth to bedrock, high water table, etc., when locating and designing structures. Pipelines used for transferring manure should be flushed with clean water after use. When applicable and compatible, consider the joint use of manure transfer pipelines with irrigation system design requirements. The pipe pressure rating required may need adjustment based on manure temperature. Consider corrosion resistance and water tightness in the selection of pipe material and joints. Consider the potential for salt (struvite) deposits in smaller diameter pipes. Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact the <u>Natural Resources Conservation Service - Maryland</u> or visit the <u>electronic Field Office Technical Guide (eFOTG)</u>. Consider the need for appropriate check valves, anti-siphon protection and open air breaks in all pipelines. Provisions should be made for removing solids from conveyance conduits such as concrete lined ditches, etc The waste transfer system needs to be compatible with other components of the waste management system. The system must also have the capacity to meet the loading and unloading requirements as outlined in a waste management plan or comprehensive nutrient management plan (CNMP). Loading and unloading of storage facilities, as well as tying into collection and spreading equipment, including irrigation systems may need to be considered. The type of waste and its consistency along with farm management and experience should also be considered. Management flexibility should be considered where dry or frozen manure may be a problem. Alternative transfer methods, supplemental water and temporary stacking or mixing capacity should be considered. #### **Off-Farm Transfer/Transport** Consider route selection and timing of manure transfer to minimize impact of nuisance odors. Consider equipment type and covering of manure to minimize particulate matter generation during transport of manure. Vehicles used to transfer manure should be sized to reduce the danger of rollover. #### **CRITERIA** #### **General Criteria** Manure transfer components shall comply with all federal, state, and local laws, rules and regulations. <u>Structures</u> - All structures, including those that provide a work area around pumps, shall be designed to withstand the anticipated static and dynamic loading. Structures shall be designed to withstand earth and hydrostatic loading in accordance with the Maryland conservation practice standard for Waste Storage Facility, Code 313. Covers, when needed, shall be designed to support the anticipated dead and live loads. Reception pits shall be sized to contain a minimum of one full day's manure production. For reception pits collecting runoff, the reception pit shall be sized to also contain at least the volume of runoff from the 25-year, 24-hour storm. Additional capacity shall be added as needed for free-board and emergency storage. Openings to structures to receive manure from alley scrape collection shall be a minimum of 9 square feet with one dimension no smaller than 4 feet. The opening shall be equipped with a grate designed to support the anticipated loads. When curbs are needed in conjunction with structures, they shall be constructed of either concrete or wood. Curbs shall be of sufficient height to ensure total manure flow into the structure and be adequately anchored. Reception pits, hoppers, manure pumps, valves, pipelines and gravity drop structures must be liquid tight. The reception pit or hopper shall be located to provide acceptable access for the scraping and cleaning equipment. The design shall consider the safety of humans and animals during construction and operation. Excavation depths near or under building foundations should be the minimum required. Support for the foundation may be necessary to protect the building and workers during construction. <u>Pipelines</u> - Design of pipelines shall be in accordance with sound engineering principles considering the type of load on the pipe, exposure, etc. The minimum pipeline capacity from collection facilities to storage/treatment facilities shall be the maximum peak flow anticipated on a daily basis The minimum pipeline capacity from storage/treatment facilities to utilization areas shall ensure the storage/treatment facilities can be emptied within the time limits stated in the management plan for manure utilization. Pipelines used for transferring waste to an irrigation system shall meet the requirements of NRCS conservation practice standard, Irrigation Water Conveyance, Pipeline, Code 430. All pipes shall be designed based on the type of material and total solids content and shall convey the required flow without plugging. Flow velocities shall be sufficient to minimize settling of solids in the pipeline. Clean-out access shall be provided for gravity pipelines at a maximum interval of 200 feet for lines carrying non-bedded manure. For pipelines carrying bedded manure the maximum interval shall be 150 feet. Gravity pipelines shall not have horizontal curves or bends except minor deflections (less than 10 degrees) in the pipe joints unless special design considerations are used. Pipelines shall be designed to have a minimum of two feet per second and a maximum of 6 feet per second velocity except where ruminant manure is transferred in a gravity system; in which case velocities can be reduced if a minimum of five feet of head is provided on the pipe system. Where slurry manure is transferred in a gravity system, a minimum of 4 feet of head is required on the pipe system. Gravity discharge pipes used for emptying a storage/treatment facility shall have a minimum of two gates or valves, one of which shall be manually operated. Pipelines shall be installed with appropriate connection devices to prevent contamination of private or public water supply distribution systems and ground water. <u>Other Conduits</u> - Concrete lined ditches shall be designed in accordance with NRCS conservation practice standard Lined Waterway or Outlet, Code 468. A minimum design velocity of 1.5 feet per second shall be used. <u>Pipe</u> - The pipe must meet or exceed the applicable specification rating listed in Table 1. The manufacturer's recommendations for deflection in the joints must be followed. All pipe for pump or direct transfer systems must meet the pressures and dynamic loads generated by the system and installation as specified by the pump manufacturer. All pipes must withstand the earth, live load, and dead load pressures. All pipes shall have a minimum internal pressure rating as shown in Table 1 or two times the maximum operating pressure, whichever is less. <u>Valves</u> - Valves shall be installed in pipelines where there is a positive working head for emergencies and to service the system. As a minimum, a valve shall be located immediately before entering the storage facility. A second valve shall be required near the pump if the storage facility is not readily accessible for emergency operation, or if it is needed to service the pump without emptying the pipeline. All the valves shall be positive seating, guillotine valves, that can be operated by hand and are readily accessible for operation and service. <u>Pumps</u> - Pumps installed for manure transfer shall meet the requirements of NRCS conservation practice standard Pumping Plant, Code 533. Pumps shall be sized to transfer manure at the required system head and volume. Type of pump shall be based on the consistency of the manure and the type of bedding used. Requirements for pump installations shall be based on manufacturer's recommendations. <u>Safety</u> - The system design shall consider the safety of humans and animals during construction and operation. Open structures shall be provided with covers or barriers such as gates, fences, etc. Ventilation and warning signs shall be provided for manure transfer systems as necessary to warn of the danger of entry and to reduce the risk of explosion, poisoning, or asphyxiation. Pipelines from enclosed buildings shall be provided with a water-sealed trap and vent or similar devices where necessary to control gas entry into buildings. Barriers shall be placed on push-off ramps to prevent tractors or other equipment from slipping into waste collection, storage, or treatment facilities. <u>Odors</u> - A transfer system pipe shall enter a storage facility at or near the bottom of the storage facility unless precluded by the site conditions. This will minimize the surface disturbance and allow a crust to form where possible to further minimize odors. **Biosecurity** - Manure from diseased animals shall be handled in accordance with the recommendations of the state veterinarian. Equipment leaving the farm shall be sanitized as appropriate to prevent the spread of disease. Producers and custom applicators shall follow all Maryland Department of Agriculture recommended biosecurity precautions. #### **Gravity Transfer Systems** The operation of a gravity transfer system depends on the consistency of the manure and the overall hydraulics of the system. Consistency is affected by the type of manure, bedding, or other materials, and the amount of water or other liquids present. Table 2 gives criteria for gravity systems. Gravity systems should have a source of water or waste liquids available to flush the system if needed. Systems for Dairy and Veal Operations - Wastes from lactating dairy herds are generally suitable for gravity pipeline systems. The amount and type of bedding used could affect the performance of the system. Bedding amounts up to 3 lb. per head, per day, of chopped hay or straw, sawdust, or newspapers can be used. Bedding amounts beyond this level could result in a consistency problem with the waste in the gravity transfer system. Long stem hay or straw and frozen materials should be avoided. The addition of water could overcome these problems, provided it was added in a gutter chain or other mixing system prior to entering the gravity transfer system. Unless special provisions are made, the use of ground rock or sand as bedding should be avoided with gravity transfer systems. Systems for Swine Operations - There tends to be a solid separation with this type of waste. Therefore it is important that gravity systems transferring this type of waste maintain minimum grades to insure that solids and liquids do not separate within the system and are not allowed to accumulate at any point. This can be addressed with collection hoppers that act in support of flush systems, allowing all the wastes to transfer at one time. Also, the pipelines shall be kept at grades no steeper than 1% where the systems will be a continuous flow type. Outlets for such systems should be positioned so that solid accumulations within the storage or near the outlets do not block the pipe. As a minimum, it is recommended that there be at least two feet from the invert of the pipe to the bottom of the storage or other reception pits. Additional clearance may need to be added if more accumulations of solids may be expected. Systems for Dairy Replacements and Beef - This type of manure does not generally lend itself for gravity pipe transfer systems because of the consistency of the manure itself and the lack of additional liquids. Systems can be planned and designed for use under certain conditions, such as freestalls during the summer months, where limited bedding will be used. Provisions for an alternate system must be planned for when freezing or drying conditions make the waste too solid to transfer in these systems. <u>Flush Systems</u> - These systems accumulate the waste in a hopper or temporary storage structure at the head of the system. The waste is then transferred through a pipe at one time by opening a valve and releasing the wastes suddenly. These systems tend to move solids more efficiently, especially when the pipelines are on steeper grades. They can be used to alter the consistency of some waste by adding solids and liquids separately and allowing them to mix naturally in the hopper or temporary storage. An agitator can be added to mechanically agitate the waste before it is transferred, if necessary. <u>Hoppers</u> - Collection hoppers are needed at the head of all gravity pipe systems to collect and direct the waste into the pipelines. The hopper can consist of an existing storage or tank. Minimum volume of a hopper shall be 100 cubic feet or one-half day's accumulation of waste, whichever is less. The minimum depth of the hopper is (8) eight feet, unless the waste is of a liquid consistency and then the minimum depth should be (4) four feet. All hoppers should have a smooth finish on the inside. Fillets to reduce sharp corners and significant head losses at the pipe inlet are recommended. The bottom of the hopper shall be sloped to match the grade of the pipe exiting the hopper. All hoppers should have a safety grate or shroud to restrict access to the hopper. A concrete curb which is a minimum of six inches high and five inches wide, or a wooden curb which is 12 inches (nominal) high, is required across from the loading side of the grate to insure total manure flow into the drop structure, when applicable. These curbs must be adequately anchored to the barn floor or the drop structure. Hoppers should be covered to minimize freezing and drying problems. A warning sign should be posted near hoppers and reception pits describing the hazards associated with the hopper and accumulated gases. <u>Gates</u> - Gates can be installed on gravity transfer systems at the hoppers to convert them to flush type systems. These gates can be ball valves, guillotine slide gates, or globe valves that do not restrict the opening to the pipe when fully opened. The gate action should be smooth and relatively quick. Screw type valve operating mechanisms are not to be used for flush type systems. <u>Pipelines</u> - All gravity pipes shall have smooth interiors; the pipelines shall be completely and uniformly bedded to one foot over the top of the pipe. The pipe diameters, lengths, and slopes shall be as shown in Table 2. The diameter of the pipeline should be considered when determining the amount of time the waste will travel within the system. Waste that enters the pipe should exit within 48 hours. Where sawdust and chopped paper are used for bedding, shorter periods should be considered to avoid the formation of a dry plug. Wherever possible, milk house wastewater or another source of water should be added at the hop- per or reception pit to facilitate manure flow. The transfer pipe should exit into a storage facility at the bottom or through the bottom for freezing protection, unless it is a hog or veal system or sand bedding, and then it should be off the bottom accordingly to allow for solid accumulations. <u>Vents</u> - A vent should be considered in the gravity transfer system at a location beyond the entrances to the pipeline to alleviate air locking of the system. The minimum size of vents shall be one inch. **Hydraulics** - The overall hydraulic components of the system include the working head, the losses due to entrances and friction head, and the size of the collection hoppers and pipelines. The minimum head between the highest point where the system will be loaded at the top of the hopper and the maximum level of the waste in the storage shall be no less than the values in Table 2. All entrances to the pipes shall be made with a smooth, square edge. Vertical changes in direction in a pipeline should not be made in greater than 45° angles at any one time. All changes in vertical direction should be made with manufactured watertight fittings compatible with the type of pipe being used. Changes in horizontal direction should be made in drop structures or manholes. Milking Center Wastes - Milking center wastes shall first be collected at the drain exiting the milkhouse, using a manhole or clean-out assembly. If the drains carry wastewater from a milking parlor, a settling tank with at least two days volume shall be provided if the pipe length will exceed 100 feet. The pipe shall enter a storage facility at a location which will be free draining. If outleted below the maximum fill elevations for a storage facility, provisions shall be made to protect the outlet from clogging and facilitate cleanings. <u>Slopes and Chutes</u> - Slopes and chutes to transfer waste shall be 2:1 or steeper. The waste should be dropped on a slope a minimum of 5.0 feet. The waste should be confined in a channel as much as possible to maintain depth and velocity. <u>Gravity Unload Systems</u> - Due to the potential hazards and management requirements, gravity unload systems are generally not recommended. They are permitted only with pipe diameters eight inches or less and where no bedding is in the storage. If a gravity system is used, it should have a minimum of two (2) independently operated valves which shall be manually operated. The valves must be commercially manufactured and guaranteed to be water tight at twice the maximum operating head. The area where the pipeline is to discharge shall be enclosed to impound a minimum volume equal to twice the size of the receiving system or spreader. #### **Direct Transfer Systems** These types of systems collect the waste and transfer it directly without temporary storage. These systems are generally furnished and installed by vendors servicing the industry for this type of handling equipment. **Ram Pumps** -These systems may include a ram or plunger oscillating in a chamber. There is a hopper to direct the waste to the chamber. The system is power driven, usually with electric motors. The systems are available in various sizes and capacities. The plunger head and pipeline sizes are directly related to capacity. The systems are limited by working head and pipeline distance. A general working guide for these types of installations is shown on Table 3. All manufacturer's recommendations and limitations shall be followed in design and installation. Elevators and Conveyors - These systems consist of a chain, belt, or auger operating in a chute or housing. The waste is usually dropped or moved directly into the system without a hopper or collection system. These systems may be used to extend present waste handling equipment to transfer the wastes to storage or another transfer system. Working height and distances are limited and exposure to freezing weather may affect their performance and maintenance requirements. All manufacturer's recommendations and limitations shall be followed in design and installation. #### **Pump Transfer Systems** These types of systems utilize a temporary storage and pump to transfer the waste. The temporary storage collects and stores the wastes and serves as a pumping port or platform. Pumps are used to agitate and transfer the waste. These systems are limited by working head and pipeline distances, as well as available power sources. A general working guide for these types of pump systems is shown in Table 3. All manufacturer's recommendations and limitations shall be followed in design and installation. <u>PTO Driven Pumps</u> - These pumps are driven through the Power Take-Off (PTO) from another power source. Pumps may be mounted on the storage structure or portable. They may operate in a vertical or angled position. They are rated in horsepower and capacity for pumping. Agitating takes additional power requirements and may be located separately. The minimum available horsepower should be 80 hp on the PTO. These pumps may be used for loading and unloading storage. The discharge nozzles can be directed for agitating, loading, or transferring wastes to a pipeline. <u>Waste Water Pumps</u> - These pumps are installed in the temporary storage tank and are powered with electric motors. The equipment must be compatible with the type of wastewater being transferred. Acids, detergent, manure, or other wastes may affect the performance and life span of these pumps. The manufacturer's recommendations will verify the environment and condition for which these pumps are applicable. Sludge build-up in the reception pits could be a problem and should be eliminated as much as possible by agitating or routine maintenance. The temporary storage size is important to the performance of this type of system in that it dictates the cycle time of the pump. Effluent type pumps with 3/4-inch solid capacity should only be used in conjunction with a dilute wastewater that has passed through a separate settling facility with a minimum of two days flow volume. If a separate settling facility is not provided, a sewage rated pump with at least 1 1/2-inch solids capacity should be used. A general working guide for these types of pump systems is shown in Table 3. The maximum cycle for these types of pumps shall not be more than one per 12-hour period. Wastewater pumps shall be selected and specified based on discharge capacity, total head, and solids capacity. The pumps shall be equipped with float switches, an alarm, and be wired directly into a power circuit. **Reception Pits/Temporary Storage** - These are temporary storage tanks to accommodate a pump transfer system. They must be sized according to the waste production and the capacity and working requirements of the pumps. Reception pits shall be sized to contain one full days manure production. Openings and access to these reception pits must be located and sized to accommodate the pumps and operational needs of the system. These storage facilities shall meet the requirement of Waste Storage Facility (313). <u>Sumps</u> - Sumps may be needed in some pumping systems in order to completely empty reception pits or other storages. The sump is recessed below the floor to allow for waste to drain to a low point and for the pump assemblies to reach the floor elevations. The minimum manure sump size shall be 1.0 feet deep and 2.0 feet in diameter or square or as necessary to accommodate the pump. <u>Vacuum Systems</u> - Some pump systems operate by collecting the waste on the vacuum side of a pump and then transferring it under pressure. These systems are limited to a suction head and should not be used when the bottom of the storage or collection point is more than 12 feet lower than the highest point in the system, before it reaches the pump. A general working guide for these pumps is shown in Table 3. **Safety** - Warning signs, ladders, guard rails, shields, and other devices shall be provided, as appropriate, to insure the safety of humans and livestock. Fences shall comply with Practice Standard 382, Fence. Ventilation and warning signs must be provided for enclosed waste holding structures, as necessary, to prevent explosion, poisoning, or asphyxiation. No safety shields or devices supplied with equipment shall be removed or altered in any way. Warning signs should be posted near hoppers and reception pits describing the hazards associated with the hopper and accumulated gases. ## Additional Criteria for Utilization of Manure on Agricultural Land <u>Waste Utilization</u> - Manure shall be applied to the field in amounts, uniformity, rates, and at a time consistent with the requirements of the producer's current nutrient management plan, and in accordance with the Maryland conservation practice standards for Nutrient Management, Code 590, and Waste Utilization, Code 633. Liquid or slurry manure shall be adequately agitated prior to transfer for the purpose of land application both on and off the farm. Where manure is to be utilized on land not owned or controlled by the producer, the nutrient management plan, as a minimum, shall document the amount of manure to be transferred, the nutrient content of the manure, the date of transfer, and who will be responsible for the environmentally acceptable use of the waste. Provisions shall be made to inform the receiver of the manure of the proper storage and/or utilization requirements. <u>Hauling Equipment</u> - Equipment used for hauling manure from one geographical area to another area shall be capable of hauling the manure without spillage, leakage, or wind-blown losses during transport. Hauling equipment shall meet all applicable local, state, and federal laws regarding highway transportation. Weight limits of roads used for hauling waste shall be followed. <u>Note</u>: Specific cost-sharing programs or other funding sources may impose criteria in addition to, or more restrictive than, those specified in this standard. #### PLANS AND SPECIFICATIONS Plans and specifications for installing manure transfer systems shall be in accordance with this standard and shall describe the requirements for applying the practice to achieve its intended purpose. #### **OPERATION AND MAINTENANCE** An Operation and Maintenance (O&M) Plan must be prepared and reviewed with the land-owner or operator responsible for the application of this practice. The O&M Plan shall provide specific instructions for proper operation and maintenance of each component of this practice and shall detail the level of repairs needed to maintain the effectiveness and useful life of the practice. The operation and maintenance plan shall describe what actions will be taken to minimize flies and other insects during the transfer of manure. #### **Record-Keeping** For on-farm transfer, records shall be kept by the producer in accordance with requirements of his/her current nutrient management plan. For the transfer of manure from one farm to another, record-keeping by the producer or his/her designated representative will be in accordance with the State of Maryland's regulations (COMAR 15.20.05 – 15.20.08) concerning nutrient management and manure transfer, and may include such items as: - 1. Type, nutrient content, and amount of manure transferred; - 2. Solids percentage of the manure; - 3. Date of the transfer; - 4. Name and address of the source and destination of the manure; and, - 5. Condition of the manure as left at the destination (e.g., spread, stockpiled and covered, etc.). # SUPPORTING DATA AND DOCUMENTATION #### Field and Design Data Record on appropriate engineering paper. The following is a list of the minimum required design data: - 1. Plan view sketch and final grading plan as required; - Profile of the existing conditions between the collection point and destination as appropriate; - 3. Cross-sections as appropriate; - 4. Number and type of animals served by the system as well as the type and volume of bedding; - 5. Consistency of the waste; - Soil borings with depth to high water table identified. Includes soil type and any special restrictions; - 7. Topographic survey as needed for the location and elevation of the manure transfer system components and appurtenances; - 8. Runoff volume from the contributing drainage area for the required design storm in accordance with Chapter 2, EFH, Part 650, or by other approved method; - 9. Size the manure transfer system components in accordance with the AWMFH, Part 651, or by other approved methods; - 10. Show job class on the plan; - 11. References to components supplied by others (pumps, etc.); - 12. Maximum operating level (elevation) and pressures as appropriate; - 13. Structural details of all components with dimensions and special requirements noted; - 14. Seeding, fertilizing, and mulching requirements: - 15. Quantities. #### **Construction Check Data/As-Built** Installation and construction check notes are to be recorded in sufficient detail to show that the practice meets this standard and applicable specifications. Minimum requirements are: - Documentation of site visits on CPA-6. The documentation shall include the date, who performed the inspection, specifics as to what was inspected, all alternatives discussed, and decisions made and by whom; - 2. Measurements to show dimensions and elevations of the components, as appropriate, in red on the "as-built" plans; - 3. The as-built drawings shall include name of the installer, manufacturer, and date of completion of each transfer system and/or component. The as-built records shall also include any applicable "Statement of Conformance" presented or certified by suppliers of structures or equipment. The design folder, as-built drawings, certifications and specifications shall be filed in the case file; - 4. Measurements and computations for quantities will be recorded and filed to the extent that they are required to determine the number of practice units performed, or as requested by the landuser; - 5. Provide a statement on seeding; - 6. Sign and date "as-built" plan and notes including statement that the practice meets or exceeds plans or specifications. #### **REFERENCES** - Maryland Department of Transportation, State Highway Administration, October 1993. Standard Specifications for Construction Materials. Baltimore, Maryland, - USDA, Natural Resources Conservation Service. Conservation Practice Standards. Maryland Field Office Technical Guide, Section IV. - 3. USDA, Natural Resources Conservation Service. *National Engineering Handbook, Part* 650. - 4. USDA, Natural Resources Conservation Service. *National Handbook of Conservation Practices*. TABLE 1 - MINIMUM PIPE QUALITY FOR VARIOUS SEPERATION DISTANCES TO WELLS, BEDROCK, AND GROUNDWATER | | | | Pipe
Material | Minimum
Pressure
Rating (psi) 3/ | Applicable
Specifications | |----------------------|--------------|----------------------------|------------------|--|-----------------------------------| | GRAVITY FLOW SYSTE | | <u>CM</u> | | | | | | | | Plastic (PVC) | | ASTM D3033; D3034; F679; or F794 | | | | | Plastic (PE) | | ASTM F894 | | | | | Steel | | ASTM A53; A134; A135; or A139 | | PRESSURE FLOW SYSTEM | | | | | | | Dist | ance From: | | | | | | | | Bedrock | | | | | | Well
(ft) | or
Ground
Water (ft) | | | | | _ | 25-50 | >0.5 | PVC | 200 | ASTM D2241 or D1785 | | | | | All Other | 200 | 1/ | | _ | 50-100 | 0.5-3 | PVC | 125 | ASTM D2241 | | | | | All Other | | 1/ | | | - | >3 | PVC | 80 | 430-DD ^{2/} | | | | | All Other | | 1/ | | | >100 | 0.5-3 | PVC | 80 | 430-DD ^{2/} | | | | | All Other | | 1/ | | | _ | >3 | PVC | | ASTM D3033 or D3034 (Max. SDR=35) | | | | | All Other | | Sewer Pipe 1/ | #### Notes: ¹/ Applicable ASTM or AWWA standard for specific material. ² NRCS Practice Standard 430, Irrigation Water Conveyance, Pipeline, High-Pressure, Underground, Plastic (Ft.), National Handbook of Conservation Practices. ^{3/} Pressure ratings for pipe and joints must meet the listed pressure or 2 times the maximum operating pressure, whichever is less. For gravity systems, the pipe joints must meet the requirements of the applicable specification and the specifications referenced therein. **TABLE 2 - GRAVITY SYSTEMS** | Type of Waste 1/ | Minimum
Head
(ft) ^{2/} | Minimum and
Maximum Slope
(percent) | Maximum
Length
(ft) 3/ | Minimum and
Maximum Pipe
Diameter (inch) | |----------------------------|---------------------------------------|---|------------------------------|--| | Dairy | 5 | 1 - 15 | 200 | 18 - 30 | | Dairy, Gravity Gutter | 1 | 1 - 20 | 200 | 12 - 24 | | Dairy Replacement And Beef | 8 | 1 - 6 | 150 | 24 - 30 | | Veal | 1 | 0.5 - 12 | 200 | 6 - 24 | | Swine | 2 | 0.5 - 7 | 200 | 6 – 24 | | Milking Center Waste Water | 1 | 0.5 - 10 | 500 4/ | 4 – 6 | #### Notes: **TABLE 3 - PUMP SYSTEMS** | Type of System | Maximum
Working
Head (ft) | Maximum
Distance
(ft) | Pipe Size
(inch) | |------------------------------|---------------------------------|-----------------------------|---------------------| | Ram Pump 1/ | 25 | 200 | 12 - 15 | | Agitator Pumps ^{2/} | 50 | 400 | 4-6 | | Waste Water Pumps 3/ | 50 | 800 | 1 ½ - 2 | | Vacuum | 30 4/ | 200 | 4- 6 | #### Notes: $^{^{1/}}$ Maximum amount of bedding is 2 to 3 pounds per day per head of chopped or short hay, straw, sawdust, or similar material. ²/ Head equals the elevation difference from the hopper inlet to the highest elevation waste is stored. ³/ Maximum length for continuous closed conduits. ^{4/} After settling tank for milking parlors. Maximum length from parlor to settling tank is 100 feet on a continuous grade. ^{1/} Mechanical or hydraulic driver plunger type pump. ² Centrifugal or vacuum type slurry pumps. $[\]frac{3}{}$ Electric, submersible pumps. $[\]frac{4}{2}$ No more than 12 feet can be on the suction side of the pump.